8 research outputs found

    On the design of a wireless multi-antenna monitoring system

    Get PDF
    In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several challenges. The channel’s delay spread is substantial and the distance between receiver and transmitter is in the order of 400 meters. In order to guarantee reliable communication, we combine multi-antenna techniques (spacetime block coding) with strong coding (LDPC codes). The cost and complexity of the monitoring units is kept low, and most of the processing is performed on the central control unit. We present a system design for the monitoring units and show simulation results

    A Language and Toolset for the Synthesis and Efficient Simulation of Clock-Cycle-True Signal-Processing Algorithms

    Get PDF
    Optimal simulation speed and synthesizability are contradictory requirements for a hardware description language. This paper presents a language and toolset that enables both synthesis and fast simulation of fixed-point signal processing algorithms at the register-transfer level using a single system description. This is achieved by separate code generators for different purposes. Code-generators have been developed for fast simulation (using ANSI-C) and for synthesis (using VHDL). The simulation performance of the proposed approach has been compared with other known methods and turns out to be comparable in speed to the fastest among them

    Implementation of a Combined OFDM-Demodulation and WCDMA-Equalization Module

    Get PDF
    For a dual-mode baseband receiver for the OFDMWireless LAN andWCDMA standards, integration of the demodulation and equalization tasks on a dedicated hardware module has been investigated. For OFDM demodulation, an FFT algorithm based on cascaded twiddle factor decomposition has been selected. This type of algorithm combines high spatial and temporal regularity in the FFT data-flow graphs with a minimal number of computations. A frequency-domain algorithm based on a circulant channel approximation has been selected for WCDMA equalization. It has good performance, low hardware complexity and a low number of computations. Its main advantage is the reuse of the FFT kernel, which contributes to the integration of both tasks. The demodulation and equalization module has been described at the register transfer level with the in-house developed Arx language. The core of the module is a pipelined radix-23 butterfly combined with a complex multiplier and complex divider. The module has an area of 0.447 mm2 in 0.18 ¿m technology and a power consumption of 10.6 mW. The proposed module compares favorably with solutions reported in literature

    A Language and Toolset for the Synthesis and Efficient Simulation of Clock-Cycle-True Signal-Processing Algorithms

    No full text
    Abstract — Optimal simulation speed and synthesizability are contradictory requirements for a hardware description language. This paper presents a language and toolset that enables both synthesis and fast simulation of fixedpoint signal processing algorithms at the register-transfer level using a single system description. This is achieved by separate code generators for different purposes. Codegenerators have been developed for fast simulation (using ANSI-C) and for synthesis (using VHDL). The simulation performance of the proposed approach has been compared with other known methods and turns out to be comparable in speed to the fastest among them. Keywords—hardware description languages, simulation, synthesis I
    corecore